the equilibrium concentration of $CH_2=CHCH_2SR$ was of about the same magnitude as the estimated uncertainty in measuring the concentrations;⁹ furthermore, steric effects should be smaller with SR than with SOR, SO_2R , or OR. In the series $n-C_nH_{2n+1} > i$ -Pr $\approx t$ -Bu it is again not clear that the observed differences are significant, and it is a series in which steric crowding of the $CH₂$ group in

Notes

The Periodination Reaction: Fast One-Step Synthesis of C_6I_6 **from** C_6H_6

L. S. Levitt* and R. Iglesias

Chemistry Department, College of Science, University of Texas at El Paso, El Paso, Texas 79968

Received April 22, 1981

In an attempt to prepare the unknown compound, periodyl benzene (PhIO₃), benzene was added dropwise over a period of around 15 min to a 1.0 M solution of H_5IO_6 in concentrated H_2SO_4 in an open beaker at 0-5 °C, whereupon the colorless solution turns green,¹ then red, and finally light yellow, as a yellow-tan precipitate gradually forms, which, after recrystallization from $Me₂SO$, is insoluble in all common solvents except Me₂SO and MeCN: mp \sim 260 °C with decomposition, giving off I₂; elemental analysis, 8.5% C and 91.5% I; $M_r \ge 800$ by freezing point depression of camphor; mass spectrum parent peak at 834 $(C_6I_6^+$.) and M - 1 at 707 $(C_6I_5^+$.); proton NMR, no resonance absorption; burns with an aromatic sooty flame along with dense purple fumes of I_2 , from all of which evidence one would rightly conclude that the compound prepared here is $C_6I_6^2$ and, on the basis of the quantity of benzene used, the yield is 48% peridobenzene.

Registry No. H_5 IO₆, 10450-60-9; C₆I₆, 608-74-2; PhIO₃, 82891-66-5; benzene, 71-43-2.

compounds, to pursue this research.

(2) The stoichiometric equation used to calculate yield is $2C_6H_6 + 3IO_4^- + 9I^- + 12H_3O^+ \rightarrow 2C_6I_6 + 24H_2O$, the I⁻ indicating that some of the benzene is oxidized, presumably to CO

Stereoselective Synthesis of $(23S,25R)$ -23,25,26-Trihydroxyvitamin D_3 and (23S,25R)-25-Hydroxyvitamin **D**₃ 26,23-Lactol, **Presumed Vitamin D3 Metabolites**

Sachiko Yamada, Keiko Nakayama, and Hiroaki Takayama*

Faculty of Pharmaceutical Sciences, Teikyo University, Sagamiko, Kanagawa 199-01, Japan

Received May 7, 1982

Calcidiol lactone, 25-hydroxyvitamin D_3 26,23-lactone (4) ,¹ is a unique metabolite of vitamin D_3 which exhibits $XCH_2CH=CHY$ should be less than with OBu-t, SO_2Bu-t , etc. groups. Steric hindrance can decrease resonance interactions with the double bond, **as** in the first part of the series 2-naphthyl > 1 -naphthyl ≈ 9 -anthryl, but when there is too much hindrance, this resonance effect is counteracted, presumably by crowding the CH_2 group, as in the last part of the series.

a weak activity in intestinal calcium transport and bone calcium mobilization but shows the most potent activity² toward vitamin D binding protein in blood plasma of all known vitamin D metabolites. These characteristics have suggested that the metabolite may have an important role in other aspects of vitamin D action. **As** one of our projects on the stereoselective synthesis of vitamin D metabolites using chiral templates,³ we have synthesized $(23R,25S)^{-4}$ and $(23S,25R)$ -calcidiol lactones⁵ stereoselectively and for the first time determined the stereochemistry of the natural metabolite⁵ to be S at C-23 and R at C-25. Recently a new metabolite, $(23S)$ -23,25-dihydroxyvitamin $D_3 (1)$,⁶ has been isolated and **has** been shown to be a biosynthetic precursor of calcidiol lactone **(4).'** It can be assumed that biological transformation of 23,25-dihydroxyvitamin D_3 (1) to the lactone **(4)** may proceed via 23,25,26-trihydroxyvitamin D₃ (2) through 25-hydroxyvitamin D₃ 26,23-lactol **(3;** Scheme I) and that these postulated biosynthetic intermediates have the same stereochemical configuration at C-23 and C-25 as those of calcidiol lactone **(4).** So we planned the stereoselective synthesis of these two presumed vitamin D_3 metabolites.

In this paper we report the stereoselective synthesis of **(23S,25R)-23,25,26-trihydroxyvitamin** D, **(2)** and **(23S,25R)-25-hydroxyitamin D3** 26,23-lactol **(3).** Both compounds have been demonstrated to be converted to

- (5) Yamada, *S.;* Nakayama, K.; Takayama, H. Chem. Pharm. *Bull.* **1981,29,** 2393.
- (6) Tanaka, **Y.:** Wichmann, J. K.; Schnoes, H. K.; DeLuca, H. F. Biochemistry **1981,20,** 3895.
- T. *Proc.* Natl. Acad. Sci. U.S.A. **1981,** 78, 4805. (7) Tanaka, Y.; DeLuca, **H.** F.; Schnoes, H. K.; Ikekawa, N.; Eguchi,

⁽¹⁾ The green intermediate first formed (presumably PhIO₃), and the red one, should be further investigated, as well **as** the generality of the periodination of aromatics. The authors invite any investigator interested in this unusual reaction, which might be of use in deuterating aromatic

⁽¹⁾ Wichmann, J. K.; DeLuca, H. F.; Schnoes, H. K.; Horst, R. L.;

Shepard, R. M.; Jorgensen, N A. *Biochemistry* 1979, 18, 4775.
(2) (a) Tanaka, Y.; Wichmann, J. K.; Paaren, H. E.; Schnoes, H. K.;
DeLuca, H. F. *Proc. Natl. Acad. Sci. U.S.A*. 1980, 77, 6411. (b) Horst,

R. L. Biochem. Biophys. Res. *Commun.* **1979,89,** 286. (3) Takayama, H.; Ohmori, M.; Yamada, S. Tetrahedron Lett. **1980,** *21,* 5027.

⁽⁴⁾ Yamada, S.; Nakayama, K.; Takayama, H. Tetrahedron Lett. **1981, 22,** 2591.

calcidiol lactone **(4)** by in vitro incubation with chick kidney homogenates, as expected. $8,9$

The strategy for the synthesis of the two compounds **(2** and 3) is essentially the same as that for calcidiol lactone:^{4,5} an R configuration at C-25 is introduced by utilizing the chirality of (R) - $(-)$ -citramalic acid, and the *S* configuration at C-23 is induced by the stereoselective iodolactonization of the Δ^{22} -26-carboxylic acid 7a. The (25R)-carboxylic acid 7a^{4,5} was synthesized by starting with C(22)-steroid aldehyde **5** and optically pure (R)-sulfone **6a** (Scheme 11), which was readily obtained from (R) -citramalic acid in eight steps in 67% overall yield. $4,5$

Iodolactonization of the unsaturated carboxylic acid **7** was studied in some detail to induce the desired chirality at C-23. It has been reported by Barton et al.1° that the iodoacetoxylation of steroids with a 22(23) double bond proceeds in a regio- and stereoselective manner to yield the iodoacetate in which the bulky iodine is introduced at C-22 from the sterically less hindered side of the molecule. In accord with their results, the iodolactonization (I_2, I_1) CH₃CN) of Δ^{22} -steroidal carboxylic acid 11 has been reported¹¹ to yield exclusively the (23S)-iodolactone 12 (Scheme 111). It was also found, in our stereoselective synthesis of $(23R,25S)$ -calcidiol lactone,⁴ that the iodolactonization (I₂, CH₃CN) of (25S)-carboxylic acid 7b gave the (23S)-iodolactone **8b** in 90% stereoselectivity, in accord with the precedents. In the extensive studies on the stereoselective iodolactonization of acyclic γ , δ -unsaturated carboxylic acids,¹² it has been reported that the stereose-

Table I. Iodolactonization of Az2-26-Carboxylic Acid (7a,b)

entry	sub- strate	conditions	product distribution, %			
			8a	8a	8b	8 _b
	7а 7Ь	I., CH, CN	57	43	90	10
$\boldsymbol{2}$	7а 7b	I_1 , Et ₂ O-THF, aqueous NaHCO,	43	57	88	12
3	7а 7b	I, CH, CN, pyridine	27	73	57	43
4	7а 7b	I_2 , CH ₂ Cl ₂ , pyridine	20	80	55	45

lectivity of the reaction depends on the reaction conditions, and under acidic conditions (I_2, CH_3CN) the thermodynamically more stable isomers are produced selectively while under basic conditions $(I_2, Et_2O-THF, aqueous)$ $NaHCO₃$) thermodynamically less stable isomers, kinetic products, are formed predominantly. We examined the iodolactonization of the two epimeric carboxylic acids **7a** and **7b** under thermodynamic and kinetic conditions. As Table I shows, the stereoselectivity of the reaction depends on both the stereochemistry at C-25 of the carboxylic acid **7** and the reaction conditions. Although the 25s isomer **7b** gave the (23S)-iodolactone **8b13** in high selectivity under acidic conditions as described above, the 25R isomer **7a** yielded both (23s)- and (23R)-iodolactones **8a** and **8a'** in a comparable ratio under the same conditions (entry 1). However, in an attempted iodolactonization of **7a** and **7b** under the kinetic conditions reported by Chamberlin et al.^{12b} (entry 2), no appreciable change was observed in the ratio of the products. A remarkable change in the stereoselectivity was observed when pyridine was added to the reaction mixture as the base (entry 3 and **4),** and in the case of (25R)-carboxylic acid **7a** the selectivity was reversed, giving rise to the desired iodolactone **8a'** in 80% selectivity. It is likely that the function of pyridine in the stereochemical consequence of the reaction may be similar to that of NaHCO₃, because it was also found that in a well-studied system,12 iodolactonization of 3-methyl-4 pentenoic acid, pyridine worked similarly to NaHCO_{3} , yielding the kinetic product predominantly.¹⁴ Although it is not clearly understood why the addition of $NAHCO₃$ was not effective in our system in altering the stereochemical course of the reaction, pyridine is shown to be a useful reagent for the purpose.

The mixture of the $(23R,25R)$ - and $(23S,25R)$ -iodolactones **8a'** and **8a** from the entry 4 experiment was subjected to reduction with n -Bu₃SnH without separation. After purification on a silica gel column, the major $(23S,25R)$ -lactone 9a' was obtained in pure form in 56% overall yield (from **7a).** Reduction of the lactone 9a' with $LiAlH₄$ was accompanied by the deprotection of the 5,7diene group to afford the desired provitamin D **(10)** in 90% yield. The provitamin D **(10)** was transformed into the corresponding vitamin D **(2)** by UV irradiation followed by thermal isomerization as usual.

The synthesis of $(23S,25R)-25$ -hydroxyvitamin D_3 26,23-lactol **(3)** was performed in one step from

⁽⁸⁾ We have noticed the presence of a new metabolite which migrated to the same retention volume as that of (23S,25R)-23,25,26-trihydroxyvitamin D₃ in the incubates of chick kidney homogenate with 25hydroxyvitamin D₃. Detailed studies on the metabolite are currently **progressing.**

⁽⁹⁾ Nakayama, K.; Yamada, S.; Takayama, H.; Takasaki, Y.; Suda, T. 102th Meeting of the Pharmaceutical Society of Japan, Osaka, 1982, p 516; details will be reported in a full paper.

⁽¹⁰⁾ Barton, D. H. R.; Power, J. **P.; Sammes, P.** *G. J. Chem. SOC.,* **Perkin** *Trans.* **1 1972, 53.**

Miyasaka, S. *Chem. Pharm. Bull.* **1980,28, 2852. (11) Ikekawa, N.; Hirano, Y.; Ishiguro, M.; Oshida, J.; Eguchi, T.;**

^{(12) (}a) Bdett, P. A.; Myerson, J. *J. Am. Chem. SOC.* **1978,100,3950.** (b) Chamberlin, A. R; Dezube, M.; Dussault, P. Tetrahedron Lett. 1981,

^{46, 4611.&}lt;br>(13) The stereochemistry of the iodo lactones 8 and lactones 9 at C-23 (13) The stereochemistry of the iodo lactones 8 and lactones 9 at C-23 was determined on the basis of the spectral data and closely related precedents.⁴⁵ The assignments are in complete agreement with those reported: Mo *46,* **3422.**

⁽¹⁴⁾ Nakayama, K.; Yamada, S.; **Takayama, H., unpublished results.**

(23S,25R)-calcidiol lactone **(4)5** by reduction with diisobutyl alminium hydride (DIBAL) (toluene, -70 *"C)* in high yield (93%). It is interesting to note that only one anomer at C-26 was obtained **as** verified by the 'H NMR spectrum (CDCl₃): δ 1.34 (3 H, s, H-27) 3.8-4.20 (2 H, m, H-3 and H-23), 4.83 (2 H, br s, H-19 and H-26), 5.07 (1 H, br s, H-19), 6.14 (2 H, AB q, $J = 11$ Hz, H-6 and H-7).

Experimental Section

The melting point was determined with a Yanaco micro melting point apparatus and was not corrected. ¹H NMR spectra were obtained with a Varian XL-100 instrument. Chemical shifts are reported in parts per million relative to tetramethylsilane. Mass spectra were obtained with a JEOL JMS-D3OO spectrometer. Infrared spectra were obtained with a JASCO A-302 spectrometer. *UV* spectra were recorded on a Union Giken SM 401 spectrometer.

Iodolactonization **of 4-Phenyl-1,2,4-triazoline-3,5-dione** Adducts of $(25R)$ - and $(25S)$ -3 β ,25-Dihydroxy-5,7,22-cholestatrien-26-oic Acids (7a,b). Method A. Iodine (25 mg, 9.8 \times 10⁻² mmol) was added to a solution of carboxylic acid 7 (20 mg, 3.3×10^{-2} mmol) in CH₃CN (1 mL) at 0 °C, and the solution was stirred at that temperature for *5* h. After addition of aqueous $Na₂S₂O₃$, the mixture was extracted with CHCl₃, washed with brine, dried over Na₂SO₄, and evaporated. The product ratio was analyzed by HPLC [column, μ -Porasil; solvent, 2-propanol-hexane (15:85) for the analysis of the products from 7b and ethyl ace-
tate-hexane (7:3) for those from 7a].

Method B. Carboxylic acid 7 (20 mg) was dissolved in $Et₂O-$ THF $(1:12 \text{ mL})$ and combined with aqueous saturated NaHCO₃ (2 **mL).** The solution was stirred for 30 min at room temperature and cooled to 0° C, and then iodine (25 mg) was added. After *5* h, the reaction mixture was worked up as above, and the products were analyzed by HPLC.

Method *C.* A solution of carboxylic acid 7 (20 mg) and pyridine (20 μ L, 2.5 \times 10⁻¹ mmol) in CH₃CN or CH₂Cl₂ (1 mL) was stirred at room temperature for 30 min and cooled to 0 "C, and then iodine **(25** mg) was added. The mixture was stirred at that temperature for *5* h and then worked up as above. The products were analyzed by HPLC.

The results of the iodolactonization are shown in Table I.

4-Phenyl-1,2,4-triazoline-3,5-dione Adducts of $(23S,25R)$ and **(23R,25R)-3@,25-Dihydroxy-22-iodo-5,7-cholestadiene** 26,23-Lactone (8a,a'). A solution of 7a (105 mg, 1.74×10^{-1} mmol) and pyridine (105 μ L, 1.3 mmol) in CH₂Cl₂ (6 mL) was stirred at room temperature for 30 min and cooled to 0 "C, and then iodine (133 mg, 5.24×10^{-1} mmol) was added. After 2.5 h, iodine (133 mg) and pyridine (105 μ L) were added, and the resultant solution was stirred for a further 7.5 h at 0 °C. Aqueous $Na₂S₂O₃$ was added, and the mixture was extracted with CHCl₃, washed with brine, dried over $Na₂SO₄$, and evaporated. The residue was chromatographed on silica gel (6 g) by using hexane-ethyl acetate (2:8) as the eluent to give a 1:4 mixture of 8a and 8a' (95 mg). The mixture was subjected to the next reaction without separation.

4-Phenyl- **1,2,4-triazoline-3,5-dione** Adducts **of** (23R,25R) and **(235,25R)-3@,25-Dihydroxy-5,7-cholestadiene** 26,23- Lactone (9a,a'). To a solution of the iodolactone (8a and 8a', 1:4; 100 mg, 1.37×10^{-1} mmol) in DME (4 mL) was added *n*-Bu₃SnH (300 μ L, 1.14 mmol), and the mixture was stirred at 60 °C for 1.5 h. After evaporation of the solvent, the residue was dissolved in CH₃CN and washed with hexane to remove organic tin compounds, and the CH₃CN was evaporated. The residue was chromatographed on silica gel (10 g) with hexane-ethyl acetate (2:8) as the eluent to yield $9a$ (16 mg) and $9a'$ (62 mg) in that order.
9a: MS, m/e 428 (M⁺ – triazoline), 395. $9a'$: MS, m/e 428 (M⁺ - triazoline), 395; IR (CHCl₃) 1685, 1785, 1770; ¹H NMR (CDCl₃) ⁶0.80 (3 H, 9, H-18), 0.94 (3 H, **S,** H-19), 1.44 (3 H, **S,** H-27),

4.15-4.65 (2 H, m, H-3 and H-23).
(23S,25R)-5,7-Cholestadiene-36,23,25,26-tetrol (10). To a suspension of LiAlH₄ (10 mg, 0.26 mmol) in THF (1 mL) was added a solution of $9a'$ (28 mg, 4.6×10^{-2} mmol) in THF (1 mL), and the mixture was refluxed for **50** min. After the excess of the reagent was quenched with aqueous **THF,** the mixture was filtered and washed with THF and $CHCl₃-MeOH$ (2:1), and the combined filtrate and washings were dried over $\mathrm{Na}_2\mathrm{SO}_4$ and evaporated. The residue was chromatographed on Sephadex LH-20 (10 g) with

hexane-CHCl,-MeOH (25752) **as** the eluent to yield **10:** 18 mg; mp 225–228 °C; MS, m/e 432 (M⁺), 414, 399, 383; ¹H NMR $(Me₂SO-d₆)$ δ 0.58 (3 H, s, H-18), 0.86 (3 H, s, H-19), 1.07 (3 H, s, H-27), 3.6-4.0 (2 H, m, H-3 and H-23), 5.37 and 5.52 (2 H, m, H-6 and H-7); UV (95% EtOH) 272, 282, 293 nm.

(23**S,25R)-23,25,26-Trihydroxyvitamin D**₃ (2). A solution of 10 (6 mg) in 95% EtOH (200 mL) was irradiated by a highpressure mercury lamp (200 **W)** through a Vycor filter for 5 min under an argon atmosphere, the temperature being maintained below *5* "C. The solvent was evaporated, and the residue was chromatographed on Sephadex LH-20 $(25 g)$ and eluted with hexane-CHCl₃-MeOH (25:75:2.5) to yield previtamin D: 2.6 mg; UV (95% EtOH) 260 nm. The previtamin D was dissolved in 95% EtOH (2 mL), heated for 7 h at 60-63 "C, and then allowed to stand at room temperature for 8 h. After evaporation of the solvent, the residue was chromatographed on Sephadex LH-20 (25 g) and eluted with hexane-CHCl₃-MeOH (25:75:2.5) to give vitamin D 2: 1.9 mg; high-resolution MS, $C_{27}H_{44}O_4$ requires m/e 432.3239, found m/e 432.3256; ¹H NMR (CDCl₃) δ 0.56 (3 H, s, 3.8-4.2 (2 H, m, H-3 and H-23), 4.82 (1 H, br s, H-19), 5.04 (1 H, br s, H-19), 6.13 (2 H, AB q, $J = 11$ Hz, H-6 and -7); UV (95%) EtOH) 265 nm. H-18), 1.22 (3 H, 9, H-27), 3.57 (2 H, AB **q,** *J* = 11 Hz, H-26),

(23S,25R)-25-Hydroxyvitamin D₃26,23-Lactol (3). A solution of (23S,25R)-calcidiol lactone $(4, 5, 1.8, \text{mg}, 4.2 \times 10^{-3} \text{mmol})$ in toluene (300 μ L) was cooled to -70 °C under argon, diisobutyl aluminium hydride (25% hexane solution, 26.5 μ L, 4.7 \times 10⁻² mmol) was added, and the mixture was stirred for 2 h at that temperature. The reaction was quenched with cold ethanol (150 μ L) at -70 °C, stirred for 20 min at that temperature, and then allowed to warm to room temperature. The mixture was diluted with CHCl₃, washed with 5% HCl and water, dried over Na₂SO₄, and evaporated. The residue was chromatographed on Sephadex LH-20 (10 g) with hexane-CHC13-MeOH (35:652) **as** the eluent to give lactol 3: 1.67 mg; MS, m/e 430 (M⁺), 412, 394, 379, 356, 342; IR (CHCl₃) 3400 cm⁻¹; UV (95% EtOH) 265 nm.

Registry **No. 2,** 83198-41-8; **3,** 83136-06-5; **4,** 77714-47-7; 7a, 81495-58-1; **7b,** 80320-87-2; 8a, 80320-88-3; 9a, 78109-10-1; 9a', 78183-86-5; 10,83136-07-6; **(23S,25R)-23,25,26-trihydroxyprevitamin D,,** 83136-08-7.

Reaction between 2-Amino-2-deoxy-D-glucose Derivatives and Sulfite. 2. Synthesis of 2-(D-*arabino* - Tetrahydroxybutyl)-5-(3,4-dihydroxy-**2-sulfobuty1)pyrazine**

Shoji Fujii* and Yasuzo Kosaka

Department of Agricultural Chemistry, Kyoto Prefectural University, Shimogamo, Kyoto 606, Japan

Received February *17, 1982*

In continuation of our studies of the reaction of 2 $amino-2-deoxy-D-glucose (1)$ derivatives in sodium bisulfite solution we recently reported the condensation of 2 amino-2-deoxy-D-glucose oxime with glyoxal-sodium bisulfite.' We now report the condensation of 2 mol of **1** in heated sodium bisulfite solution. The principal product is a pyrazine derivative with two polyhydroxyalkyl side chains one of which is sulfonated. The reaction constitutes a new route to sulfonated **polyhydroxyalkylpyrazine** derivatives.

The formation of the two pyrazine derivatives "fructosazine" **(2)** and "deoxyfructosazine" **(3)** from 1 has been reported.^{2,3} Excessive side reactions of 1 in alkaline media resulted, however, in a low yield of 2. Ingles^{4,5} found

⁽¹⁾ Fujii, S.; **Takagi, T.; Seki, M.** *Agric. Bid. Chem.* **1982,** *46,* **2169. (2) Fujii,** S.; Kikuchi, **R.; Kushida,** H. *J. Org. Chem.* **1966,** *31,* **2239. (3) Kuhn, R.; Kruger, G.; Haas, H.** J.; **Seeriger, A.** *Justus Liebigs Ann. Chem.* **1961,** *644,* **122.**